3,408 research outputs found

    An inquiry-based learning approach to teaching information retrieval

    Get PDF
    The study of information retrieval (IR) has increased in interest and importance with the explosive growth of online information in recent years. Learning about IR within formal courses of study enables users of search engines to use them more knowledgeably and effectively, while providing the starting point for the explorations of new researchers into novel search technologies. Although IR can be taught in a traditional manner of formal classroom instruction with students being led through the details of the subject and expected to reproduce this in assessment, the nature of IR as a topic makes it an ideal subject for inquiry-based learning approaches to teaching. In an inquiry-based learning approach students are introduced to the principles of a subject and then encouraged to develop their understanding by solving structured or open problems. Working through solutions in subsequent class discussions enables students to appreciate the availability of alternative solutions as proposed by their classmates. Following this approach students not only learn the details of IR techniques, but significantly, naturally learn to apply them in solution of problems. In doing this they not only gain an appreciation of alternative solutions to a problem, but also how to assess their relative strengths and weaknesses. Developing confidence and skills in problem solving enables student assessment to be structured around solution of problems. Thus students can be assessed on the basis of their understanding and ability to apply techniques, rather simply their skill at reciting facts. This has the additional benefit of encouraging general problem solving skills which can be of benefit in other subjects. This approach to teaching IR was successfully implemented in an undergraduate module where students were assessed in a written examination exploring their knowledge and understanding of the principles of IR and their ability to apply them to solving problems, and a written assignment based on developing an individual research proposal

    Non-Equilibrium Dynamics and Superfluid Ring Excitations in Binary Bose-Einstein Condensates

    Get PDF
    We revisit a classic study [D. S. Hall {\it et al.}, Phys. Rev. Lett. {\bf 81}, 1539 (1998)] of interpenetrating Bose-Einstein condensates in the hyperfine states F=1,mf=11\ket{F = 1, m_f = -1}\equiv\ket{1} and F=2,mf=+12\ket{F = 2, m_f = +1}\equiv\ket{2} of 87{}^{87}Rb and observe striking new non-equilibrium component separation dynamics in the form of oscillating ring-like structures. The process of component separation is not significantly damped, a finding that also contrasts sharply with earlier experimental work, allowing a clean first look at a collective excitation of a binary superfluid. We further demonstrate extraordinary quantitative agreement between theoretical and experimental results using a multi-component mean-field model with key additional features: the inclusion of atomic losses and the careful characterization of trap potentials (at the level of a fraction of a percent).Comment: 4 pages, 3 figures (low res.), to appear in PR

    Multi-qubit compensation sequences

    Full text link
    The Hamiltonian control of n qubits requires precision control of both the strength and timing of interactions. Compensation pulses relax the precision requirements by reducing unknown but systematic errors. Using composite pulse techniques designed for single qubits, we show that systematic errors for n qubit systems can be corrected to arbitrary accuracy given either two non-commuting control Hamiltonians with identical systematic errors or one error-free control Hamiltonian. We also examine composite pulses in the context of quantum computers controlled by two-qubit interactions. For quantum computers based on the XY interaction, single-qubit composite pulse sequences naturally correct systematic errors. For quantum computers based on the Heisenberg or exchange interaction, the composite pulse sequences reduce the logical single-qubit gate errors but increase the errors for logical two-qubit gates.Comment: 9 pages, 5 figures; corrected reference formattin

    On the Asymmetries of Extended X-ray Emission from Planetary Nebulae

    Full text link
    Chandra X-ray Observatory (CXO) images have revealed that the X-ray emitting regions of the molecule-rich young planetary nebulae (PNs) BD+30 3639 (BD+30) and NGC 7027 are much more asymmetric than their optical nebulosities. To evaluate the potential origins of these X-ray asymmetries, we analyze X-ray images of BD+30, NGC 7027, and another planetary nebula resolved by CXO, NGC 6543, within specific energy bands. Image resolution has been optimized by sub-pixel repositioning of individual X-ray events. The resulting subarcsecond-resolution images reveal that the soft (E < 0.7 keV) X-ray emission from BD+30 is more uniform than the harder emission, which is largely confined to the eastern rim of the optical nebula. In contrast, soft X-rays from NGC 7027 are highly localized and this PN is more axially symmetric in harder emission. The broad-band X-ray morphologies of BD+30 and NGC 7027 are highly anticorrelated with their distributions of visual extinction, as determined from high-resolution, space- and ground-based optical and infrared imaging. Hence, it is likely that the observed X-ray asymmetries of these nebulae are due in large part to the effects of nonuniform intranebular extinction. However, the energy-dependent X-ray structures in both nebulae and in NGC 6543 -- which is by far the least dusty and molecule-rich of the three PNs, and displays very uniform intranebular extinction -- suggests that other mechanisms, such as the action of collimated outflows and heat conduction, are also important in determining the detailed X-ray morphologies of young planetary nebulae.Comment: 33 pages, 12 figures; to appear in the Astrophysical Journa

    Construction of Parseval wavelets from redundant filter systems

    Full text link
    We consider wavelets in L^2(R^d) which have generalized multiresolutions. This means that the initial resolution subspace V_0 in L^2(R^d) is not singly generated. As a result, the representation of the integer lattice Z^d restricted to V_0 has a nontrivial multiplicity function. We show how the corresponding analysis and synthesis for these wavelets can be understood in terms of unitary-matrix-valued functions on a torus acting on a certain vector bundle. Specifically, we show how the wavelet functions on R^d can be constructed directly from the generalized wavelet filters.Comment: 34 pages, AMS-LaTeX ("amsproc" document class) v2 changes minor typos in Sections 1 and 4, v3 adds a number of references on GMRA theory and wavelet multiplicity analysis; v4 adds material on pages 2, 3, 5 and 10, and two more reference

    Land Use Inventory of Salt Lake County, Utah From Color Infrared Aerial Photography 1982

    Get PDF
    Salt lake County, Utah\u27s major population center, continues to experience rapid urban growth. The Impacts of urbanization on land use patterns and natural resources in the county are of particular Interest to both state and local policy makers and planners. The effect of urban development on a dwindling agricultural land base and water resources must be assessed to allow a rational basis for future water allocation and land use planning

    Utilitarian Collective Choice and Voting

    Get PDF
    In his seminal Social Choice and Individual Values, Kenneth Arrow stated that his theory applies to voting. Many voting theorists have been convinced that, on account of Arrow’s theorem, all voting methods must be seriously flawed. Arrow’s theory is strictly ordinal, the cardinal aggregation of preferences being explicitly rejected. In this paper I point out that all voting methods are cardinal and therefore outside the reach of Arrow’s result. Parallel to Arrow’s ordinal approach, there evolved a consistent cardinal theory of collective choice. This theory, most prominently associated with the work of Harsanyi, continued the older utilitarian tradition in a more formal style. The purpose of this paper is to show that various derivations of utilitarian SWFs can also be used to derive utilitarian voting (UV). By this I mean a voting rule that allows the voter to score each alternative in accordance with a given scale. UV-k indicates a scale with k distinct values. The general theory leaves k to be determined on pragmatic grounds. A (1,0) scale gives approval voting. I prefer the scale (1,0,-1) and refer to the resulting voting rule as evaluative voting. A conclusion of the paper is that the defects of conventional voting methods result not from Arrow’s theorem, but rather from restrictions imposed on voters’ expression of their preferences. The analysis is extended to strategic voting, utilizing a novel set of assumptions regarding voter behavior

    Mid-infrared spectra of late-type stars: Long-term evolution

    Full text link
    Recent ground-based mid-infrared spectra of 29 late-type stars, most with substantial dust shells, are compared to ground-based spectra of these stars from the 1960s and 1970s and to IRAS-LRS spectra obtained in 1983. The spectra of about half the stars show no detectable changes, implying that their distributions of circumstellar material and associated dust grain properties have changed little over this time interval. However, many of the stars with strong silicate features showed marked changes. In nearly all cases the silicate peak has strengthened with respect to the underlying continuum, although there is one case (VY~CMa) in which the silicate feature has almost completely disappeared. This suggests that, in general, an oxygen-rich star experiences long periods of gradual silicate feature strengthening, punctuated by relatively rare periods when the feature weakens. We discuss various mechanisms for producing the changes, favoring the slow evolution of the intrinsic dust properties (i.e., the chemical composition or grain structure). Although most IRAS spectra agree well with ground-based spectra, there are a number of cases where they fall well outside the expected range of uncertainty. In almost all such cases the slopes of the red and blue LRS spectra do not match in their region of overlap.Comment: Accepted in ApJ, 20 pages, 5 figures, 1 tabl
    corecore